SCHEME OF COURSE WORK

Department of Information Technology

Course Details:	
Course Title	DATA WAREHOUSING AND DATA MINING LAB
Course Code	15CT1140
Program:	B.TECH
Semester	VII
Prerequisites	Python Lab/Java

CO No.	Course outcomes
CO1	Able to get the acquaintance to WEKA tool
CO2	Competent to preprocess the data for mining
CO3	Proficient in generating association rules
CO4	Able to build various classification models
CO5	Able to realize clusters from the available data

CO-PO-PSO Mapping:

. (CO-PO-PSO	Mapp	ing:													
	Course outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
-	COI	3		2	2	2										
	CO2			2	3	2								1	1	1
-	CO3	3	3	2	-3	2 ·		•	•	-		-	•	1	•	
	CO4	3	3	2	3	2								1		
	CO5	3	3	2	3	2								1	1	

Assessment Met	Vi	va voce	/ Mid-Te	st					
			-				•	•	

Teaching-Learning and Evaluation

Week	EXPERIMENT	Course	Assessment	
		Outcomes	LEARNING	Method &
			STRATEGY	Schedule
1	Basics of WEKA tool a.	CO-1	Demonstration	Lab Internal-1,
	Investigate the Application		Implementation	Viva Voce
	interfaces. b. Explore the default		-	(Week 8)
	datasets.			
2	Pre-process a given dataset based	CO-2	Demonstration	Lab Internal-1,
	on the following: a. Attribute		Implementation	Viva Voce
	Selection b.Handling Missing		_	(Week 8)
	Values c. Discretization d.			
	Eliminating Outliers			
3	Pre-process a given dataset based	CO-2	Demonstration	Lab Internal-1,
	on the following: a. Discretization		Implementation	Viva Voce
	b. Eliminating Outliers			(Week 8)
4	Create a dataset in ARFF	CO-2	^{Demonstration}	Lab Internal-1,
	(Attribute-Relation File Format)		^D Implementation	Viva Voce
	for any given dataset and			(Week 8)
	perform Market-Basket Analysis.			x 1 x . 1 4
5	Generate Association Rules	CO-3	Demonstration	Lab Internal-1,
	using the Apriori algorithm.		^D Implementation	Viva Voce
				(Week 8)
6	Generate Association Rules	CO-3	Demonstration	Lab Internal-1.
	using the FP-Growth algorithm.		Implementation	Viva Voce
	6		r · · · · ·	(Week 8)
7	Build a Decision Tree by using	CO-4	Demonstration	Lab Internal-2
	ID3 algorithm		Implementation	Viva Voce
			I.	(Week 16)
8	Demonstration of classification	CO-4	Demonstration	Lab Internal-2
	rule process on a given dataset		Implementation	Viva Voce
	using Naïve Bayesian Classifier.			(Week 16)
9	Demonstration of classification	CO-4	Demonstration	Lab Internal-2
	rule process on a given dataset		Implementation	Viva Voce
	using Back propagation (Multi-			(Week 16)
	layer perceptron) Classifier			
10	Build various Regression models.	CO-4	Demonstration	Lab Internal-2
			Implementation	Viva Voce
				(Week 16)
11	Cluster the given dataset by using	CO-5	Demonstration	
	the k-Means Clustering algorithm		Implementation	Lab Later 10
	and visualize the cluster mean			Lab Internal-2
				viva voce

	values and standard deviation of			(Week 16)
	dataset attributes			
12	Cluster the given dataset by using	CO-5	Demonstration	Lab Internal-2
	the DBSCAN Clustering		Implementation	Viva Voce
	algorithm			(Week 16)
13	Cluster the given dataset by using	CO-5	Demonstration	Lab Internal-2
	the Expectation Maximization		Implementation	Viva Voce
	Clustering algorithm.			(Week 16)
18	Lab Internal-2			
19/20	Lab External Exam			